All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiwavelength campaign observations of a young solar-type star, EK Draconis. II. understanding prominence eruption through data-driven modeling and observed magnetic environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00602568" target="_blank" >RIV/67985815:_____/24:00602568 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0359836" target="_blank" >https://hdl.handle.net/11104/0359836</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/ad85df" target="_blank" >10.3847/1538-4357/ad85df</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiwavelength campaign observations of a young solar-type star, EK Draconis. II. understanding prominence eruption through data-driven modeling and observed magnetic environment

  • Original language description

    EK Draconis, a nearby young solar-type star (G1.5V, 50-120 Myr), is known as one of the best proxies for inferring the environmental conditions of the young Sun. The star frequently produces superflares, and Paper I presented the first evidence of an associated gigantic prominence eruption observed as a blueshifted H alpha Balmer line emission. In this paper, we present the results of the dynamical modeling of the stellar eruption and examine its relationship to the surface starspots and large-scale magnetic fields observed concurrently with the event. By performing a 1D freefall dynamical model and a 1D hydrodynamic simulation of the flow along the expanding magnetic loop, we found that the prominence eruption likely occurred near the stellar limb (125+5167+7 degrees from the limb) and was ejected at an angle of 15-5+6246+6 degrees relative to the line of sight, and the magnetic structures can expand into a coronal mass ejection. The observed prominence displayed a terminal velocity of similar to 0 km s-1 prior to disappearance, complicating the interpretation of its dynamics in Paper I. The models in this paper suggest that prominence's H alpha intensity diminishes at around or before its expected maximum height, explaining the puzzling time evolution in observations. The Transiting Exoplanet Survey Satellite light curve modeling and (Zeeman) Doppler Imaging revealed large midlatitude spots with polarity inversion lines and one polar spot with dominant single polarity, all near the stellar limb during the eruption. This suggests that midlatitude spots could be the source of the gigantic prominence we reported in Paper I. These results provide valuable insights into the dynamic processes that likely influenced the environments of early Earth, Mars, Venus, and young exoplanets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA22-34841S" target="_blank" >GA22-34841S: Science with Solar Orbiter: Focusing on eruptive processes</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Volume of the periodical

    976

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    255

  • UT code for WoS article

    001364845800001

  • EID of the result in the Scopus database

    2-s2.0-85213378053