All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cytoplasmic Inter-Subunit Interface Controls Use-Dependence of Thermal Activation of TRPV3 Channel

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F19%3A00510414" target="_blank" >RIV/67985823:_____/19:00510414 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/ijms20163990" target="_blank" >https://doi.org/10.3390/ijms20163990</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms20163990" target="_blank" >10.3390/ijms20163990</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cytoplasmic Inter-Subunit Interface Controls Use-Dependence of Thermal Activation of TRPV3 Channel

  • Original language description

    The vanilloid transient receptor potential channel TRPV3 is a putative molecular thermosensor widely considered to be involved in cutaneous sensation, skin homeostasis, nociception, and pruritus. Repeated stimulation of TRPV3 by high temperatures above 50 degrees C progressively increases its responses and shifts the activation threshold to physiological temperatures. This use-dependence does not occur in the related heat-sensitive TRPV1 channel in which responses decrease, and the activation threshold is retained above 40 degrees C during activations. By combining structure-based mutagenesis, electrophysiology, and molecular modeling, we showed that chimeric replacement of the residues from the TRPV3 cytoplasmic inter-subunit interface (N251-E257) with the homologous residues of TRPV1 resulted in channels that, similarly to TRPV1, exhibited a lowered thermal threshold, were sensitized, and failed to close completely after intense stimulation. Crosslinking of this interface by the engineered disulfide bridge between substituted cysteines F259C and V385C (or, to a lesser extent, Y382C) locked the channel in an open state. On the other hand, mutation of a single residue within this region (E736) resulted in heat resistant channels. We propose that alterations in the cytoplasmic inter-subunit interface produce shifts in the channel gating equilibrium and that this domain is critical for the use-dependence of the heat sensitivity of TRPV3.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

    <a href="/en/project/GA19-03777S" target="_blank" >GA19-03777S: Molecular Basis of Thermosensitive TRP Ion Channel Regulation in Nociceptive Neurons</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1422-0067

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    3990

  • UT code for WoS article

    000484411100147

  • EID of the result in the Scopus database

    2-s2.0-85071477682