All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Colloidally stable P(DMA-AGME)-Ale-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles as a multimodal contrast agent for down- and upconversion luminescence, magnetic resonance imaging, and computed tomography

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F21%3A00537739" target="_blank" >RIV/67985823:_____/21:00537739 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389013:_____/21:00537739 RIV/00216208:11110/21:10422721

  • Result on the web

    <a href="https://www.mdpi.com/2079-4991/11/1/230" target="_blank" >https://www.mdpi.com/2079-4991/11/1/230</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano11010230" target="_blank" >10.3390/nano11010230</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Colloidally stable P(DMA-AGME)-Ale-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles as a multimodal contrast agent for down- and upconversion luminescence, magnetic resonance imaging, and computed tomography

  • Original language description

    Multimodal imaging, integrating several modalities including down- and up-conversion luminescence, T1- and T2(T2*)-weighted MRI, and CT contrasting in one system, is very promising for improved diagnosis of severe medical disorders. To reach the goal, it is necessary to develop suitable nanoparticles that are highly colloidally stable in biologically relevant media. Here, hydrophilic poly(N,N-dimethylacrylamide-N-acryloylglycine methyl ester)-alendronate-[P(DMA-AGME)-Ale]-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) followed by coating with the polymer. The particles were tho-roughly characterized by a dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray energy dispersive spectroscopy (EDAX), selected area electron diffraction (SAED), elemental ana-lysis and fluorescence spectroscopy. Aqueous particle dispersions exhibited excellent colloidal stability in water and physiological buffers. In vitro toxicity assessments suggested no or only mild toxicity of the surface-engineered Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ particles in a wide range of concentrations. Internalization of the particles by several types of cells, including HeLa, HF, HepG2, and INS, was confirmed by a down- and up-conversion confocal microscopy. Newly developed particles thus proved to be an efficient contrast agent for fluorescence imaging, T1- and T2(T2*)-weighted magnetic resonance imaging (MRI), and computed tomography (CT).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10601 - Cell biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

    2079-4991

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    230

  • UT code for WoS article

    000610663900001

  • EID of the result in the Scopus database

    2-s2.0-85100140596