Colloidally stable P(DMA-AGME)-Ale-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles as a multimodal contrast agent for down- and upconversion luminescence, magnetic resonance imaging, and computed tomography
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F21%3A00537739" target="_blank" >RIV/67985823:_____/21:00537739 - isvavai.cz</a>
Alternative codes found
RIV/61389013:_____/21:00537739 RIV/00216208:11110/21:10422721
Result on the web
<a href="https://www.mdpi.com/2079-4991/11/1/230" target="_blank" >https://www.mdpi.com/2079-4991/11/1/230</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/nano11010230" target="_blank" >10.3390/nano11010230</a>
Alternative languages
Result language
angličtina
Original language name
Colloidally stable P(DMA-AGME)-Ale-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles as a multimodal contrast agent for down- and upconversion luminescence, magnetic resonance imaging, and computed tomography
Original language description
Multimodal imaging, integrating several modalities including down- and up-conversion luminescence, T1- and T2(T2*)-weighted MRI, and CT contrasting in one system, is very promising for improved diagnosis of severe medical disorders. To reach the goal, it is necessary to develop suitable nanoparticles that are highly colloidally stable in biologically relevant media. Here, hydrophilic poly(N,N-dimethylacrylamide-N-acryloylglycine methyl ester)-alendronate-[P(DMA-AGME)-Ale]-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) followed by coating with the polymer. The particles were tho-roughly characterized by a dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray energy dispersive spectroscopy (EDAX), selected area electron diffraction (SAED), elemental ana-lysis and fluorescence spectroscopy. Aqueous particle dispersions exhibited excellent colloidal stability in water and physiological buffers. In vitro toxicity assessments suggested no or only mild toxicity of the surface-engineered Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ particles in a wide range of concentrations. Internalization of the particles by several types of cells, including HeLa, HF, HepG2, and INS, was confirmed by a down- and up-conversion confocal microscopy. Newly developed particles thus proved to be an efficient contrast agent for fluorescence imaging, T1- and T2(T2*)-weighted magnetic resonance imaging (MRI), and computed tomography (CT).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10601 - Cell biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanomaterials
ISSN
2079-4991
e-ISSN
2079-4991
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
230
UT code for WoS article
000610663900001
EID of the result in the Scopus database
2-s2.0-85100140596