All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hemodynamic Mechanisms Initiating Salt-Sensitive Hypertension in Rat Model of Primary Aldosteronism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F24%3A00597939" target="_blank" >RIV/67985823:_____/24:00597939 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.biomed.cas.cz/physiolres/pdf/2024/73_S365.pdf" target="_blank" >https://www.biomed.cas.cz/physiolres/pdf/2024/73_S365.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.33549/physiolres.935260" target="_blank" >10.33549/physiolres.935260</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hemodynamic Mechanisms Initiating Salt-Sensitive Hypertension in Rat Model of Primary Aldosteronism

  • Original language description

    Few studies have investigated the hemodynamic mechanism whereby primary hyperaldosteronism causes hypertension. The traditional view holds that hyperaldosteronism initiates hypertension by amplifying salt-dependent increases in cardiac output (CO) by promoting increases in sodium retention and blood volume. Systemic vascular resistance (SVR) is said to increase only as a secondary consequence of the increased CO and blood pressure. Recently, we investigated the primary hemodynamic mechanism whereby hyperaldosteronism promotes salt sensitivity and initiation of salt-dependent hypertension. In unilaterally nephrectomized male Sprague-Dawley rats given infusions of aldosterone or vehicle, we found that aldosterone promoted salt sensitivity and initiation of salt-dependent hypertension by amplifying salt-induced increases in SVR while decreasing CO. In addition, we validated mathematical models of human integrative physiology, derived from Guyton’s classic 1972 model - Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4. Neither model accurately predicted the usual changes in sodium balance, CO, and SVR that normally occur in response to clinically realistic increases in salt intake. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models. Together these findings challenge the traditional view of the hemodynamic mechanisms that cause salt-sensitive hypertension in primary aldosteronism.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30201 - Cardiac and Cardiovascular systems

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physiological Research

  • ISSN

    0862-8408

  • e-ISSN

    1802-9973

  • Volume of the periodical

    73

  • Issue of the periodical within the volume

    Suppl.1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    12

  • Pages from-to

    "S365"-"S376"

  • UT code for WoS article

    001295308400019

  • EID of the result in the Scopus database

    2-s2.0-85202755302