Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F24%3A00597941" target="_blank" >RIV/67985823:_____/24:00597941 - isvavai.cz</a>
Result on the web
<a href="https://www.biomed.cas.cz/physiolres/pdf/2024/73_S435.pdf" target="_blank" >https://www.biomed.cas.cz/physiolres/pdf/2024/73_S435.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.33549/physiolres.935371" target="_blank" >10.33549/physiolres.935371</a>
Alternative languages
Result language
angličtina
Original language name
Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level
Original language description
Three decades ago, the first endocannabinoid, anandamide (AEA), was identified, and its analgesic effect was recognized in humans and preclinical models. However, clinical trial failures pointed out the complexity of the AEA-induced analgesia. The first synapses in the superficial laminae of the spinal cord dorsal horn represent an important modulatory site in nociceptive transmission and subsequent pain perception. The glutamatergic synaptic transmission at these synapses is strongly modulated by two primary AEA-activated receptors, cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), both highly expressed on the presynaptic side formed by the endings of primary nociceptive neurons. Activation of these receptors can have predominantly inhibitory (CB1) and excitatory (TRPV1) effects that are further modulated under pathological conditions. In addition, dual AEA-mediated signaling and action may occur in primary sensory neurons and dorsal horn synapses. AEA application causes balanced inhibition and excitation of primary afferent synaptic input on superficial dorsal horn neurons in normal conditions, whereas peripheral inflammation promotes AEA-mediated inhibition. This review focuses mainly on the modulation of synaptic transmission at the spinal cord level and signaling in primary nociceptive neurons by AEA via CB1 and TRPV1 receptors. Furthermore, the spinal analgesic effect in preclinical studies and clinical aspects of AEA-mediated analgesia are considered.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30103 - Neurosciences (including psychophysiology)
Result continuities
Project
<a href="/en/project/LX22NPO5104" target="_blank" >LX22NPO5104: National Institute for Research of Metabolic and Cardiovascular Diseases</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physiological Research
ISSN
0862-8408
e-ISSN
1802-9973
Volume of the periodical
73
Issue of the periodical within the volume
Suppl.1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
"S435"-"S448"
UT code for WoS article
001295308400024
EID of the result in the Scopus database
2-s2.0-85202720339