All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Petrological, Geochemical and Sr–Nd–O Isotopic Constraints on the Origin of Garnet and Spinel Pyroxenites from the Moldanubian Zone of the Bohemian Massif

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F16%3A00460854" target="_blank" >RIV/67985831:_____/16:00460854 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/16:10331684

  • Result on the web

    <a href="http://dx.doi.org/10.1093/petrology/egw025" target="_blank" >http://dx.doi.org/10.1093/petrology/egw025</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/petrology/egw025" target="_blank" >10.1093/petrology/egw025</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Petrological, Geochemical and Sr–Nd–O Isotopic Constraints on the Origin of Garnet and Spinel Pyroxenites from the Moldanubian Zone of the Bohemian Massif

  • Original language description

    Garnet pyroxenites, spinel pyroxenites, and eclogites in the Moldanubian Zone of the Bohemian Massif form layers and lenses in mantle-derived peridotites that are enclosed by migmatitic gneisses and granulites. We have analysed major and trace elements, and Sr, Nd and oxygen isotopes for a suite of pyroxenites, which vary in composition and origin, from nine localities (Bečváry, Horní Bory, Drahonín, Níhov, Mohelno, Nové Dvory, Horní Kounice, Karlstetten and Meidling-im-Tal) in the Gföhl Unit and Kutná Hora Complex. Based on conventional geothermobarometry, most pyroxenites yield a restricted range of temperatures (∼875–975 °C) over a wide span of pressures (∼10–30 GPa). The pyroxenite suite exhibits large variations in elemental and isotopic compositions, reflecting its complex origin and evolution. Based on the rare earth element (REE) compositions of clinopyroxene (Cpx), three types ( Type A–C) of pyroxenite can be distinguished. Such REE patterns reflect derivation of the melts from depleted (Type A) and enriched (Types B and C) mantle sources. Pyroxenites from eight localities originated as high-pressure crystal cumulates from transient basaltic melts migrating through the lithospheric mantle. In contrast, pyroxenites at the Bečváry locality represent fragments of metamorphosed gabbroic cumulates from oceanic crust. For the pyroxenite suite as a whole, a positive correlation between Sr/Nd and Eu/Eu*, radiogenic 87Sr/86Sr and negative εNd values in clinopyroxene, and variable δ18O values in coexisting garnet argue for the presence of a crustal component in the parental pyroxenite melts. Variations in compatible elements (Ni, Sc, and Co) indicate that combined assimilation and fractional crystallization was important in the evolution of most of the pyroxenite parental melts, although fractional crystallization alone is recorded by the fragments of oceanic crust, perhaps reflecting their pre-subduction crystallization history.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DD - Geochemistry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Petrology

  • ISSN

    0022-3530

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    24

  • Pages from-to

    897-920

  • UT code for WoS article

    000380254200003

  • EID of the result in the Scopus database

    2-s2.0-84978680796