Concentrations of platinum-group elements (PGE), Re and Au in arsenian pyrite and millerite from Mo–Ni–PGE-Au black shales (Zunyi region, Guizhou Province, China): results from LA-ICPMS study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F17%3A00479341" target="_blank" >RIV/67985831:_____/17:00479341 - isvavai.cz</a>
Alternative codes found
RIV/00025798:_____/17:00000124
Result on the web
<a href="http://dx.doi.org/10.1127/ejm/2017/0029-2640" target="_blank" >http://dx.doi.org/10.1127/ejm/2017/0029-2640</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1127/ejm/2017/0029-2640" target="_blank" >10.1127/ejm/2017/0029-2640</a>
Alternative languages
Result language
angličtina
Original language name
Concentrations of platinum-group elements (PGE), Re and Au in arsenian pyrite and millerite from Mo–Ni–PGE-Au black shales (Zunyi region, Guizhou Province, China): results from LA-ICPMS study
Original language description
Lower Cambrian Mo–Ni sulphidic black shales from the Huangjiawan mine (Guizhou Province, south China) have anomalous platinum-group element (PGE) concentrations (up to ca 1 ppm in total). We used LA-ICPMS to study the distribution of PGE in pyrite and Ni-sulphide (millerite) and FE-SEM/EDS for determination of As in pyrite. A sulphide concentrate was produced by innovative hydroseparation techniques from one representative sample, which contained 162 ppb Pt, 309 ppb Pd, 12.2 ppb Ru, 11.3 ppb Rh, 1.5 ppb Ir, 11 212 ppb Re and 343 ppb Au. Mineralogical analysis revealed that pyrite forms ca 12 vol%, which corresponds to a calculated ca 18.4 wt% of all mineral phases in mineralized black shale. We found that pyrite contains on average (144 analyses) 0.10 ppm Pt, 0.11 ppm Re and 1.40 ppm Au (Ru, Rh, Pd, Os and Ir were below detection limit). It also contains from ca 0.5 to ca 1.8 wt% As and can be therefore classified as arsenian pyrite. Millerite (77 analyses) showed PGE, Re and Au values below detection limit. We suggest that pyrite represents a dominant Au carrier, containing between 64 and 83% Au of the total Au mineralised rock budget. Conversely, pyrite does not bear any significant amount of Re and Pt, contributing up to ca 0.2% and ca 12.5% to their whole rock budgets, respectively. Time resolved LA-ICPMS spectra in pyrite indicate that Pt, Re and Au behave as typical lattice-bound elements, with only Re locally forming micro-inclusions. Arsenic is heterogeneously distributed in pyrite and the Au/As ratio (much lower than 0.02) is in support of Au to be structurally bound in solid solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
<a href="/en/project/GA13-15390S" target="_blank" >GA13-15390S: Re-Os geochronology of ore mineralizations from the Bohemian Massif with possible metallogenic implications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Mineralogy
ISSN
0935-1221
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
623-633
UT code for WoS article
000426885400009
EID of the result in the Scopus database
2-s2.0-85031301670