All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Micro-analytical instruments for investigation of elemental and mineral distribution in uranium-bearing sandstones

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F17%3A00521392" target="_blank" >RIV/67985831:_____/17:00521392 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5593/sgem2017H/63/S24.006" target="_blank" >http://dx.doi.org/10.5593/sgem2017H/63/S24.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/sgem2017H/63/S24.006" target="_blank" >10.5593/sgem2017H/63/S24.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Micro-analytical instruments for investigation of elemental and mineral distribution in uranium-bearing sandstones

  • Original language description

    Innovative methods in the investigation of low-grade uranium ores were tested. As the individual ore components in the rock are optically undetectable, we focused on the detection of selected elements (U, Zr, Fe, Nb), their possible associations and distribution. For this purpose, mineral mapping of sample surface was used. The studied samples are uranium-bearing sandstones with remarkable elemental and mineral compositions. Low concentrations of the main ore elements and the small size of mineral phases (in microns) require a sophisticated approach. X-ray fluorescence (XRF) was used to obtain elemental maps. The XRF analyzer was equipped with two changeable X-ray tubes and a semiconductor Si-PiN detector. The X-ray source was operated at a voltage of 35 kV and a current of 0.11 mA. Lateral resolution of scanned samples was 2 mm per image point and the acquisition time was 20 s per spot. Mineralogical analysis was performed using automated mineralogy systems (TIMA3) that included a FEG-SEM with three EDS detectors. The samples were analysed in the modal analysis mode under these operating conditions: accelerating voltage 25 kV and beam current 6 nA. The sample surface was scanned at a high resolution using a 3 µm and 1 µm pixel spacing, respectively. Data from the automated mineralogy systems were verified by X-ray powder diffraction (XRD) analyses. XRD data were collected in the 2ϴ range of 4-80° with a step size of 0.014° and a counting time of 1 second at each step. XRF analyses allowed to detect accumulations of the elements of interest across maximum possible surface areas. The resulting elemental maps showed a strong association of U-Zr and a high variability in the distribution of other elements. Furthermore, this micro-analytical technique represents a fast and effective tool for an effective selection of ore material in the preparation of thin sections and other types of samples. The mineral maps were used to establish modal mineralogy and confirm the bulk rock chemical composition. Hydrozircon was identified as the main uranium phase, and the other determined ore minerals included rutile, pyrite and magnetite. Mineral maps show two styles of mineralisation: hydrozircon as cement and hydrozircon in micro-grains dispersed in clay matter. XRD phase analyses verified the mineral composition and match well with the XRF-based elemental maps. The applied micro-analytical instruments and their combination proved to be efficient in the investigation of the given type of samples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10504 - Mineralogy

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    17th International Multidisciplinary Scientific GeoConference SGEM 2017

  • ISBN

    978-619-7408-29-4

  • ISSN

    1314-2704

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    43-54

  • Publisher name

    International Multidisciplinary Scientific Geoconference

  • Place of publication

    Sofia

  • Event location

    Hofburg

  • Event date

    Nov 27, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article