All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F18%3A00490796" target="_blank" >RIV/67985831:_____/18:00490796 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.pepi.2018.01.001" target="_blank" >http://dx.doi.org/10.1016/j.pepi.2018.01.001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.pepi.2018.01.001" target="_blank" >10.1016/j.pepi.2018.01.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

  • Original language description

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation, CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting seismic velocity distributions. Compositional variations in the polyphase rock samples do not significantly change the velocity patterns, allowing the use of RTA-derived volume percentages for the modeling of elastic moduli.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics of the Earth and Planetary Interiors

  • ISSN

    0031-9201

  • e-ISSN

  • Volume of the periodical

    275

  • Issue of the periodical within the volume

    FEB 2018

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    32-43

  • UT code for WoS article

    000425070400004

  • EID of the result in the Scopus database

    2-s2.0-85044668142