Long-Lasting (65 Ma) Regionally Contrasting Late- to Post-Orogenic Variscan Mantle-derived Potassic Magmatism in the Bohemian Massif
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F20%3A00536603" target="_blank" >RIV/67985831:_____/20:00536603 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00117734 RIV/00216305:26110/20:PU139127 RIV/41601670:_____/20:N0000026
Result on the web
<a href="https://academic.oup.com/petrology/article-abstract/61/7/egaa072/5869807?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/petrology/article-abstract/61/7/egaa072/5869807?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/petrology/egaa072" target="_blank" >10.1093/petrology/egaa072</a>
Alternative languages
Result language
angličtina
Original language name
Long-Lasting (65 Ma) Regionally Contrasting Late- to Post-Orogenic Variscan Mantle-derived Potassic Magmatism in the Bohemian Massif
Original language description
The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340–310 Ma lamprophyre-lamproite orogenic association, and (ii) a 300–275 Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognized in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres, (ii) alkaline ‘orthopyroxene minettes’ and geochemically related rocks grouped here under the new term lampyrite, and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr–Nd–Pb–Li isotope composition and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterized by variable negative εNd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterized by positive εNd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of ‘orthopyroxene minettes’ are characterized by isotopically light (‘eclogitic’) Li and strongly radiogenic (crustal) Sr and may have been metasomatized by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterized by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatized predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Petrology
ISSN
0022-3530
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
41
Pages from-to
egaa072
UT code for WoS article
000599223300007
EID of the result in the Scopus database
2-s2.0-85097785195