All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Coastal honeycombs (Tuscany, Italy): Moisture distribution, evaporation rate, tensile strength, and origin

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F22%3A00554474" target="_blank" >RIV/67985831:_____/22:00554474 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/22:10454552

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/esp.5340" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/esp.5340</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/esp.5340" target="_blank" >10.1002/esp.5340</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Coastal honeycombs (Tuscany, Italy): Moisture distribution, evaporation rate, tensile strength, and origin

  • Original language description

    Cavernous weathering (honeycombs, tafoni) is a common weathering feature of both natural and artificial exposures. Honeycombs are known from various environments but are best developed in coastal areas. There are several theories as to their origin, with salt weathering currently being the most favoured by the geomorphological community. To test if the drying pattern of salt-laden moisture results in honeycombs (the theory of Huinink et al., Earth Surface Processes and Landforms, 29(10), 1225– 1233, 2004), coastal honeycombs in the metasandstone of Tuscany (Italy) were studied both in the field and with a laboratory evaporation experiment. The depth of the evaporation front was measured by the ‘uranine-probe’ method in the honeycomb pits and lips. The evaporation rate was calculated from the depth of the evaporation front as well as the climatic conditions at the study site. Lastly, the amounts of precipitated salts were estimated based on the evaporation rate of seawater. In the evaporation experiment, the evaporation front retreated faster in the lips than in the pits, and the field measured evaporation front was closer to the surface in the pits (2 mm) than in the lips (7 mm). Thus, the calculated evaporation rate was higher in the pits than in the lips (16.1 and 4.6 mm/yr, respectively). Similarly, the amount of salts precipitated was also higher in the pits (0.7 kg/m2/yr compared to 0.2 kg/m2/yr in lips). Faster salt deposition in the pits as well as the evaporation front position fits well with the theory of Huinink et al. Based on surface tensile strength measurements, case hardening is not protecting the honeycomb lips.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GA19-14082S" target="_blank" >GA19-14082S: Stress- and hydraulic field-controlled weathering and erosion of granular rocks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Earth Surface Processes and Landforms

  • ISSN

    0197-9337

  • e-ISSN

    1096-9837

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    1653-1667

  • UT code for WoS article

    000759491200001

  • EID of the result in the Scopus database

    2-s2.0-85125094626