A detailed and comprehensive TEM, EPMA and Raman characterization of high-metamorphic grade monazites and their U-Th-Pb systematics (the Góry Sowie Block, SW Poland)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F22%3A00559644" target="_blank" >RIV/67985831:_____/22:00559644 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0009254122003096" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0009254122003096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemgeo.2022.121015" target="_blank" >10.1016/j.chemgeo.2022.121015</a>
Alternative languages
Result language
angličtina
Original language name
A detailed and comprehensive TEM, EPMA and Raman characterization of high-metamorphic grade monazites and their U-Th-Pb systematics (the Góry Sowie Block, SW Poland)
Original language description
Eleven monazite grains, two from a migmatitic gneiss and nine from two felsic granulites from the Gory Sowie Block (SW Poland) were studied with transmission electron microscopy (TEM), electron probe microanalysis (EPMA), Raman microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) U-Th-Pb analysis in order to assess processes affecting U-Th-Pb age record. Two monazite grains from the migmatitic gneiss are patchy zoned in BSE imaging and overgrown by allanite, whereas Raman results indicate moderate radiation damage. Monazite in the corresponding TEM foils shows twins and nanoinclusions of fluorapatite, thorianite, goethite, titanite, chlorite and CaSO4. Furthermore, monazite is partially replaced by secondary monazite, forming ca. 100 nm-thick layers, and calcite along grain boundaries. The submicron alterations had little or no effect on the Pb/U and Pb/Th dates, when compared to earlier age constraints on the metamorphism in the studied region. In contrast, monazite from both granulites is homogeneous in eight investigated TEM foils, contains no solid or fluid nanoinclusions or any signs of fluid-induced alterations, with only one exception of a ca. 140 nm-thick crack filled with monazite. The 206Pb/238U and marginally older 208Pb/232Th mean dates pulled for all data show good coherence. However, the 207Pb/235U isotopic record is disturbed due the presence of common Pb within the entire monazite grain in one granulite and in the cores of two monazite grains in the second granulite, where the U-Pb data of the rims are not compromised and concordant. Due to lack of TEM evidence for fluid-mediated alterations, the age discordance has to be related to addition of common Pb in the monazite lattice or in the micro-cracks. To summarize, the 208Pb/232Th data reveal the most accurate ages, which are consistent with previous geochronological studies in the region. Therefore, the Pb/Th chronometer, which is less compromised by age disturbance compared to Pb/U ages, is recommended for monazite geochronology. Application of the submicron scale investigations using TEM is recommended to evaluate potential presence of the submicron inclusions of Pb-bearing phases or compositional alterations of monazite that can remain unnoticed by using standard microanalytical instruments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Geology
ISSN
0009-2541
e-ISSN
1872-6836
Volume of the periodical
607
Issue of the periodical within the volume
September
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
121015
UT code for WoS article
000828910600002
EID of the result in the Scopus database
2-s2.0-85134237414