All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Depth distribution and chemistry of salts as factors controlling tafoni and honeycombs development

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F22%3A00560573" target="_blank" >RIV/67985831:_____/22:00560573 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/22:10449782

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0169555X22002677" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169555X22002677</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomorph.2022.108374" target="_blank" >10.1016/j.geomorph.2022.108374</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Depth distribution and chemistry of salts as factors controlling tafoni and honeycombs development

  • Original language description

    Salts play a pivotal role in the processes forming tafoni and honeycombs but only few studies have focused on their areal and depth distribution. An X-ray diffraction, rock leachates chemistry, and evaporation front depth were combined to get a deeper insight into factors controlling salt composition and distribution. Five sites representing various lithological and/or climate conditions were studied. The data show that salt composition is a result of the interaction between chemical compositions of rainwater and lithology. Gypsum was found to be a major salt on all sites with halite dominating in arid sites. On humid sites the high relative air humidity prevents its precipitation. Gypsum and epsomite dominate also on sites where the rock contains a considerable amount of pyrite. Alum-(K) occurs in quartz sandstones when affected by acid rain. Some ions probably occur in residual brines, rather than precipitated salts (Ca–Cl in arid or Na–Cl in humid sites). On arid sites, the salt content in the tafoni backwalls is 4–20 times higher than in outer walls and rapidly decreases with depth which is consistent with shallow evaporation front in backwalls. The low salt content in the outer walls reflects the dilution effect of surface runoff after rains and the infiltration of water through the outer walls toward depth. In two humid sites, on the contrary, no differences were found between the salt content of the backwalls and the outer walls. At one site the data shows that the whole surface of tafoni serves as the salt precipitation zone and tafoni are thus recently degrading. The honeycomb site differs from all tafoni sites since the honeycombs are mostly protected from rain runoff, which prevents the washing-out of salts even from the outer walls.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GA19-14082S" target="_blank" >GA19-14082S: Stress- and hydraulic field-controlled weathering and erosion of granular rocks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geomorphology

  • ISSN

    0169-555X

  • e-ISSN

    1872-695X

  • Volume of the periodical

    414

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    16

  • Pages from-to

    108374

  • UT code for WoS article

    000864865200001

  • EID of the result in the Scopus database

    2-s2.0-85135139661