Sub-surface alteration and related change in reflectance spectra of space-weathered materials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F22%3A00561082" target="_blank" >RIV/67985831:_____/22:00561082 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10453452 RIV/26722445:_____/22:N0000058
Result on the web
<a href="https://www.aanda.org/articles/aa/full_html/2022/09/aa43282-22/aa43282-22.html" target="_blank" >https://www.aanda.org/articles/aa/full_html/2022/09/aa43282-22/aa43282-22.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202243282" target="_blank" >10.1051/0004-6361/202243282</a>
Alternative languages
Result language
angličtina
Original language name
Sub-surface alteration and related change in reflectance spectra of space-weathered materials
Original language description
Context. Airless planetary bodies are studied mainly by remote sensing methods. Reflectance spectroscopy is often used to derive their compositions. One of the main complications for the interpretation of reflectance spectra is surface alteration by space weathering caused by irradiation by solar wind and micrometeoroid particles.nAims. We aim to evaluate the damage to the samples from H+ and laser irradiation and relate it to the observed alteration in the spectra.nMethods. We used olivine (OL) and pyroxene (OPX) pellets irradiated by 5 keV H+ ions and individual femtosecond laser pulses and measured their visible (VIS) and near-infrared (NIR) spectra. We observed the pellets with scanning and transmission electron microscopy. We studied structural, mineralogical, and chemical modifications in the samples. Finally, we connected the material observations to changes in the reflectance spectra.nResults. In both minerals, H+ irradiation induces partially amorphous sub-surface layers containing small vesicles. In OL pellets, these vesicles are more tightly packed than in OPX ones. Any related spectral change is mainly in the VIS spectral slope. Changes due to laser irradiation are mostly dependent on the material’s melting temperature. Of all the samples, only the laser-irradiated OL contains nanophase Fe particles, which induce detectable spectral slope change throughout the measured spectral range. Our results suggest that spectral changes at VIS-NIR wavelengths are mainly dependent on the thickness of (partially) amorphous sub-surface layers. Furthermore, amorphisation smooths micro-roughness, increasing the contribution of volume scattering and absorption over surface scattering.nConclusions. Soon after exposure to the space environment, the appearance of partially amorphous sub-surface layers results in rapid changes in the VIS spectral slope. In later stages (onset of micrometeoroid bombardment), we expect an emergence of nanoparticles to also mildly affect the NIR spectral slope. An increase in the dimensions of amorphous layers and vesicles in the more space-weathered material will only cause band-depth variation and darkening.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/LM2015093" target="_blank" >LM2015093: Sustainable Energy</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
665
Issue of the periodical within the volume
September 2022
Country of publishing house
FR - FRANCE
Number of pages
8
Pages from-to
A14
UT code for WoS article
000849631100003
EID of the result in the Scopus database
2-s2.0-85141283889