All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Transition from tholeiitic to alkali basalts via interaction between decarbonated eclogite-derived melts and peridotite

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F23%3A00568281" target="_blank" >RIV/67985831:_____/23:00568281 - isvavai.cz</a>

  • Alternative codes found

    RIV/41601670:_____/23:N0000007 RIV/00216305:26110/23:PU147943

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0009254123000542" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0009254123000542</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Transition from tholeiitic to alkali basalts via interaction between decarbonated eclogite-derived melts and peridotite

  • Original language description

    Intraplate basalts generally show a geochemical continuum from alkali to tholeiitic basalts. However, the genetic link between these two types of rocks has remained controversial. The Early Jurassic Karamay basalts in the West Junggar terrane, southern Central Asian Orogenic Belt (CAOB), erupted to form a small-volume outcrop in the stable continental intraplate region. The basalts are characterized by aphyric textures without any visible phenocrysts. Thus, they are different from the ubiquitous porphyritic-textured intraplate basalts and have a composition close to that of the mantle-derived primary melt. In contrast to chemically and petrographically well-defined alkali and tholeiitic basalts, the Karamay basalts exhibit transitional compositions spanning from alkali (with normative olivine+nepheline and normative olivine+hypersthene) to tholeiitic (with normative quartz+hypersthene), providing an important case to address the geochemical continuum of intraplate basalts. Similar to the alkali basalts in eastern China, the Karamay basalts have isotopic imprints of sedimentary carbonates, i.e., significantly lighter Mg (δ26Mg = −0.54‰ to −0.34‰) and heavier Zn (δ66Zn = 0.36–0.46‰) isotopes than the normal mantle. However, they display initial ((87Sr/86Sr)t ratios of 0.7047–0.7051, positive εNd(t) values (3.3–4.2) and positive anomalies of Nb-Ta-Ti-Zr-Hf, which are not expected in the case of incorporation of recycled carbonates. This contradiction can be reconciled by considering a decarbonation reaction between carbonates (i.e., dolomite and magnesite) and co-existing eclogite in the subducted oceanic slab at pressure >5 GPa, leaving light Mg and heavy Zn isotope signatures in the stagnant eclogite residue in the deep mantle. Combining the geochemical compositions of our samples with the geologic evidence, and considering the previous results of melt-peridotite reaction experiments, we conclude that the Karamay basalts might have originated from the interaction of silica-rich tholeiitic melt derived from the recycled decarbonated eclogite with fertile peridotite during its ascent. Our study highlights that intraplate alkali basalts, especially silica-rich ones (e.g., with SiO2>45 wt.%), can be transformed from tholeiitic melts through reaction with peridotite mantle, and demonstrates that deeply recycled oceanic crust stagnated in m.antle can serve as a main source for alkaline lavas.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GX19-29124X" target="_blank" >GX19-29124X: EVOLUTION AND POST-EMPLACEMENT HISTORY OF CARBONATITES: IMPLICATIONS FOR THE MOBILITY AND CONCENTRATION OF CRITICAL METALS</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Geology

  • ISSN

    0009-2541

  • e-ISSN

    1872-6836

  • Volume of the periodical

    612

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    121354

  • UT code for WoS article

    000944713200001

  • EID of the result in the Scopus database

    2-s2.0-85147542464