All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Significance of highly siderophile element and Re–Os isotope systematics in global carbonatites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F24%3A00603913" target="_blank" >RIV/67985831:_____/24:00603913 - isvavai.cz</a>

  • Alternative codes found

    RIV/00025798:_____/24:10169421 RIV/00216208:11310/24:10496757

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0009281924000199" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0009281924000199</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemer.2024.126095" target="_blank" >10.1016/j.chemer.2024.126095</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Significance of highly siderophile element and Re–Os isotope systematics in global carbonatites

  • Original language description

    The systematics of highly siderophile elements (HSE) in carbonatites have rarely been investigated although carbonatite melts are among key metasomatic agents in the Earth's mantle. Thus, establishing the Os isotope systematics of carbonatites is of prime importance because carbonatite metasomatism might play a determining role in driving 187Os/188Os signature of the Earth's mantle as a consequence of extreme mobility of carbonatite liquids. In this study, a suite of carbonatites from continental settings was analyzed for HSE abundances and Re–Os isotope systematics, combined with detailed petrography of sulfide phases, to provide constraints on the HSE behavior during the formation of carbonatite melts, the role of sulfides in distribution of HSE and the reliability of Re–Os isotope compositions. All investigated carbonatites display low ΣHSE <1 ppb whereby calciocarbonatites exhibit supra-chondritic OsN/IrN ratios from ∼1.4 to 15, in contrast to magnesiocarbonatites and Mg/Fe-rich carbonatites showing exclusively sub-chondritic OsN/IrN. We posit that preferential removal of Os over Ir during the segregation of calcite-normative melts from the co-existing S-rich silicate melts is the main driver of Os/Ir elemental fractionation. The present-day 187Os/188Os ratios in carbonatites range from mildly unradiogenic (∼0.124) to extremely radiogenic values (∼115–152), with 187Os/188Os(i) ratios spanning from negative to highly radiogenic (∼17) values, paralleled by highly variable 187Re/188Os ratios between 0.096 and ∼ 26,000, and without any clear relationship to the carbonatite type or emplacement age. The Re–Os systematics of carbonatites appear to be significantly modified by hydrothermal processes resulting in either removal of both Re and Os, or Re addition and, consequently, commonly negative calculated γOs values, which may indicate a rather limited potential of the Re–Os systematics to evaluate the nature of carbonatite melts. Conversely, limited Re–Os data for the samples that were likely not affected by late-stage perturbation indicate a largely radiogenic 187Os/188Os nature of carbonatite melts. Nevertheless, carbonatite melts may, in part, be responsible for the radiogenic γOs values commonly observed in mantle-derived silicate melts influenced by carbonatite-like metasomatism.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GX19-29124X" target="_blank" >GX19-29124X: EVOLUTION AND POST-EMPLACEMENT HISTORY OF CARBONATITES: IMPLICATIONS FOR THE MOBILITY AND CONCENTRATION OF CRITICAL METALS</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemie der Erde-Geochemistry

  • ISSN

    0009-2819

  • e-ISSN

    1611-5864

  • Volume of the periodical

    84

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    126095

  • UT code for WoS article

    001389089600001

  • EID of the result in the Scopus database

    2-s2.0-85186352618