Finite element approximation of a nonlinear steady-state heat conduction problem.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F01%3A05010023" target="_blank" >RIV/67985840:_____/01:05010023 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/01:05025023
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Finite element approximation of a nonlinear steady-state heat conduction problem.
Original language description
We examine a nonlinear partial differential equation of elliptic type with the homogeneous Dirichlet boundary conditions. We prove comparison and maximum principles. For associated finite element approximations we introduce a discrete analogue of the maximum principle for linear elements, which is based on nonobtuse tetrahedral partitions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ME%20148" target="_blank" >ME 148: Reliability problems in computational mechanics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational Mathematics
ISSN
0254-9409
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
27-34
UT code for WoS article
—
EID of the result in the Scopus database
—