On the convergence of series of reciprocal of primes related to the Fermat numbers.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F02%3A05020062" target="_blank" >RIV/67985840:_____/02:05020062 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the convergence of series of reciprocal of primes related to the Fermat numbers.
Original language description
We examine densities of several sets connected with the Fermat numbers $F_m=2^{2^m}+1$. In particular, we prove that the series of reciprocals of all prime divisors of Fermat numbers is convergent. We also show that the series of reciprocals of elite
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Number Theory
ISSN
0022-314X
e-ISSN
—
Volume of the periodical
97
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
95-112
UT code for WoS article
—
EID of the result in the Scopus database
—