All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analytic Models for Commuting Operator Tuples on Bounded Symmetric Domains.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F03%3A05030174" target="_blank" >RIV/67985840:_____/03:05030174 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analytic Models for Commuting Operator Tuples on Bounded Symmetric Domains.

  • Original language description

    For a domain .omega. in Cd and a Hilbert space .. of analytic functions on .omega. which satisfies certain conditions, we characterize the commuting d-tuples T=(T1,...,Td) of operators on a separable Hilbert space H such that T* is unitarily equivalent to the restriction of M* to an invariant subspace, where M is the operator d-tuple. Z .. I on the Hilbert space tensor product.......

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2003

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    355

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    837-864

  • UT code for WoS article

  • EID of the result in the Scopus database