Growth Conditions and Inverse Producing Extensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F05%3A00031544" target="_blank" >RIV/67985840:_____/05:00031544 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Growth Conditions and Inverse Producing Extensions
Original language description
We study the invertibility of Banach algebras elements in their extensions, and invertible extensions of Banach and Hilbert space operators with prescribed growth conditions for the norm of inverses. As applications, the solutions of two open problems are obtained. In the first one we give a characterization of .epsilon.(T)-subscalar operators in terms of growth conditions. In the second one we show that operators satisfying a Beurling-type growth condition possess Bishop´s property (.beta.). Other applications are also given.
Czech name
Podmínky na růst a rozšíření zajišťující invertibilitu
Czech description
Jsou charakterizovány .epsilon.(T)-substalární operátory pomocí růstu mocnin. Dále je ukázáno, že operátory splňující Beurlingovu podmínku mají Bishopovu vlastnost (.beta.).
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F03%2F0041" target="_blank" >GA201/03/0041: Methods and function theory of Banach algebras in operator theory II.</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Operator Theory
ISSN
0379-4024
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
1
Country of publishing house
RO - ROMANIA
Number of pages
25
Pages from-to
415-439
UT code for WoS article
—
EID of the result in the Scopus database
—