All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On convergence to equilibria for the Keller-Segel chemotaxis model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00085084" target="_blank" >RIV/67985840:_____/07:00085084 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On convergence to equilibria for the Keller-Segel chemotaxis model

  • Original language description

    We show that any global-in-time bounded solution to the Keller-Segel chemotaxis model converges to a single equilibrium as time tends to infinity. The proof is based on a generalized version of the Łojasiewicz-Simon theorem.

  • Czech name

    O konvergenci řešení Kellerova-Segelova modelu chemotaxe ke stacionárním stavům

  • Czech description

    V práci je dokázáno, že každé globální řešení Kellerova-Segelova modelu chemotaxe konverguje k jedinému stacionárnímu stavu pro čas jdoucí do nekonečna. Důkaz je založen na zobecněné verzi Łojasiewiczovy-Simonovy věty.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA100190606" target="_blank" >IAA100190606: Asymptotic analysis of infinite-dimensional dynamical systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    236

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    551-569

  • UT code for WoS article

  • EID of the result in the Scopus database