All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A negative answer to a problem of Fremlin and Mendoza

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00089568" target="_blank" >RIV/67985840:_____/07:00089568 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A negative answer to a problem of Fremlin and Mendoza

  • Original language description

    This article studies some convergence results for the McShane integral of functions mapping the interval [0,1] into a Banach space X from the point of view of an open problem proposed by D.H. Fremlin and J. Mendoza in [2], also the authors give a negative answer to this open problem.

  • Czech name

    Záporná odpověď na problém Fremlina a Mendozy

  • Czech description

    V této práci jsou vyšetřovány jisté konvergenční věty pro McShaneův integrál funkcí zobrazujících interval [0,1] do Banachova prostoru X z hlediska otevřeného problému, který formuloval Fremlin a Mendoza. Autoři dávají zápornou odpověď na tento problém.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F04%2F0690" target="_blank" >GA201/04/0690: Reimannian approach to integration in connection with classical mathematical analysis</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematicum Scienta

  • ISSN

    0252-9602

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CN - CHINA

  • Number of pages

    8

  • Pages from-to

    813-820

  • UT code for WoS article

  • EID of the result in the Scopus database