Strictly convex renormings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00094894" target="_blank" >RIV/67985840:_____/07:00094894 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Strictly convex renormings
Original language description
A normed space X is said to be strictly convex if x = y whenever //(x+y)/2// = //x// =//y//, in other words, when the unit sphere of X does not contain non-trivial segments. Our aim in this paper is the study of those normed spaces which admit an equivalent strictly convex norm. We present a characterization in linear topological terms of the normed spaces which are strictly convex renormable. We consider the class of all solid Banach lattices made up of bounded real functions on some set .GAMMA. . Thisclass contains the Mercourakis space c 1 (.SIGMA.´x .GAMMA.) and all duals of Banach spaces with unconditional uncountable bases. We characterize the elements of this class which admit a pointwise strictly convex renorming.
Czech name
Striktně konvexní renormace
Czech description
Je dokázaná nová charakterizace Banachových prostorů, které se dají přenormovat striktně konvexní normou.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190502" target="_blank" >IAA100190502: The structure of Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
—
Volume of the periodical
75
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
647-658
UT code for WoS article
—
EID of the result in the Scopus database
—