All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00340596" target="_blank" >RIV/67985840:_____/07:00340596 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains

  • Original language description

    We prove existence of a weak solution to the Navier-Stokes-Fourier system on a bounded Lipschitz domain in R3. The key tool is the existence theory for weak solutions developed by Feireisl for the case of bounded smooth domains. We prove our result by inserting an additional limit passage where smooth domains approximate the Lipschitz one. Results on sensitivity of solutions with respect to the convergence of spatial domains are shortly discussed at the end of the paper.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LC06052" target="_blank" >LC06052: The Nečas Center for Mathematical Modeling</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference

  • ISBN

    978-1-60133-010-9

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    American Institute of Mathematical Sciences

  • Place of publication

    Springfield

  • Event location

    Poitiers

  • Event date

    Jun 25, 2006

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article