Successive Approximation Techniques in Non-Linear Boundary Value Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00330848" target="_blank" >RIV/67985840:_____/09:00330848 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Successive Approximation Techniques in Non-Linear Boundary Value Problems
Original language description
In this work we investigate the solvability and the approximate construction of solutions of certain types of regular non-linear boundary value problems for systems of ordinary differential equations on a compact interval. According to the scheme suggested, the solution is sought for as the limit of a uniformly convergent parametrised sequence of functions constructed in an analytical form and depending on the properties of concrete boundary conditions and non-linearities. The values of the numerical parameters introduced artificially into the scheme should then be determined by solving a certain system of algebraic or transcendental equations. The work consists of 10 sections, the theoretical results are illustrated by examples. A number of exercisesare also given.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0254" target="_blank" >GA201/06/0254: Functional differential equations in Banach spaces</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Handbook of Differential Equations: Ordinary Differential Equations, 4
ISBN
978-0-444-53031-8
Number of pages of the result
152
Pages from-to
—
Number of pages of the book
702
Publisher name
Elsevier
Place of publication
New York
UT code for WoS chapter
—