Analysis of stochastic chemical system close to a SNIPER bifurcation of its mean-field model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00335835" target="_blank" >RIV/67985840:_____/09:00335835 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Analysis of stochastic chemical system close to a SNIPER bifurcation of its mean-field model
Original language description
A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example, in the modeling of cell-cycle regulation. It is shown that the stochastic system possesses oscillatory solutions even for parameter values for which the mean-field model does not oscillate. The dependence of the mean period of these oscillations on the parameters of the model (kinetic rate constants) and the size of the system (number of molecules present) are studied. Our approach is based on the chemical Fokker-Planck equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Siam Journal on Applied Mathematics
ISSN
0036-1399
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
—
UT code for WoS article
000270193200018
EID of the result in the Scopus database
—