A Variational Principle in Reflexive Spaces with Kadec-Klee Norm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00337028" target="_blank" >RIV/67985840:_____/09:00337028 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Variational Principle in Reflexive Spaces with Kadec-Klee Norm
Original language description
We prove a variational principle in reflexive Banach spaces X with Kadec-Klee norm, which asserts that any Lipschitz (or any proper lower semicontinuous bounded from below extended real-valued) function in X can be perturbed with a parabola in such a waythat the perturbed function attains its infimum (even more can be said - the infimum is well-posed). In addition, we have genericity of the points determining the parabolas. We prove also that the validity of such a principle actually characterizes thereflexive spaces with Kadec-Klee norm. This principle turns out to be an analytic counterpart of a result of K.-S. Lau on nearest points.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F04%2F0090" target="_blank" >GA201/04/0090: Geometrical analysis in Banach spaces II</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
—
UT code for WoS article
000268197200011
EID of the result in the Scopus database
—