A new approach to the existence of weak solutions of the steady Navier-Stokes system with inhomogeneous boundary data in domains with noncompact boundaries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00348177" target="_blank" >RIV/67985840:_____/10:00348177 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A new approach to the existence of weak solutions of the steady Navier-Stokes system with inhomogeneous boundary data in domains with noncompact boundaries
Original language description
We prove the existence of a weak solution to the steady Navier-Stokes problem in a three dimensional domain Omega, whose boundary partial derivative,Omega consists of M unbounded components Gamma(1), . . . ,Gamma(M) and N - M bounded components Gamma(M+1), . . . , Gamma(N) . We use the inhomogeneous Dirichlet boundary condition on partial derivative Omega. The prescribed velocity profile alpha on partial derivative Omega is assumed to have an L-3-extension to Omega with the gradient in L-2(Omega)(3x3).We assume that the fluxes of alpha through the bounded components Gamma(M+1), . . . , Gamma(N) of a,I (c) are "sufficiently small", but we impose no restriction on the size of fluxes through the unbounded components Gamma(1), . . . , Gamma(M).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Rational Mechanics and Analysis
ISSN
0003-9527
e-ISSN
—
Volume of the periodical
197
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
—
UT code for WoS article
000281246900008
EID of the result in the Scopus database
—