All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weakly wandering vectors and interpolation theorems for power bounded operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00360298" target="_blank" >RIV/67985840:_____/10:00360298 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1512/iumj.2010.59.3974" target="_blank" >http://dx.doi.org/10.1512/iumj.2010.59.3974</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1512/iumj.2010.59.3974" target="_blank" >10.1512/iumj.2010.59.3974</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weakly wandering vectors and interpolation theorems for power bounded operators

  • Original language description

    Let T be a power bounded Hilbert space operator with infinite peripheral spectrum and empty point peripheral spectrum. Then there exists a dense subset of weakly wandering vectors. This improves corresponding results for unitary operators which are knownfrom ergodic theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0473" target="_blank" >GA201/09/0473: Methods of function theory and Banach algebras in operator theory IV</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Indiana University Mathematics Journal

  • ISSN

    0022-2518

  • e-ISSN

  • Volume of the periodical

    59

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    1121-1144

  • UT code for WoS article

    000286152100015

  • EID of the result in the Scopus database