On higher order pyramidal finite elements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00355509" target="_blank" >RIV/67985840:_____/11:00355509 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On higher order pyramidal finite elements
Original language description
In this paper we first prove a theorem on the nonexistence of pyramidal polynomial basis functions. Then we present a new symmetric composite pyramidal finite element which yields a better convergence tha the nosymmetric one. It has fourteen degrees of freedom and its basis functions are incomplete piecewise triquadratic polynomials. The space of ansatz functions contains all quadratic functions on each of four subtetrahedra that form a fiven pyramidal element.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190803" target="_blank" >IAA100190803: The finite element method for higher dimensional problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Mathematics and Mechanics
ISSN
2070-0733
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
2
Country of publishing house
CN - CHINA
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—