On Optimality Conditions in Control of Elliptic Variational Inequalities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00356042" target="_blank" >RIV/67985840:_____/11:00356042 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/11:00356042
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Optimality Conditions in Control of Elliptic Variational Inequalities
Original language description
In the paper we consider optimal control of a class of strongly monotone variational inequalities, whose solution map is directionally differentiable in the control variable. This property is used to derive sharp pointwise necessary optimality conditionsprovided we do not impose any control or state constraints. In presence of such constraints we make use of the generalized differential calculus and derive, under a mild constraint qualification, optimality conditions in a ?fuzzy form. For strings, these conditions may serve as an intermediate step toward pointwise conditions of limiting (Mordukhovich) type and in the case of membranes they lead to a variant of Clarke stationarity conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Set-Valued and Variational Analysis
ISSN
1877-0533
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—