Some remarks on farthest points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00358303" target="_blank" >RIV/67985840:_____/11:00358303 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s13398-011-0012-z" target="_blank" >http://dx.doi.org/10.1007/s13398-011-0012-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13398-011-0012-z" target="_blank" >10.1007/s13398-011-0012-z</a>
Alternative languages
Result language
angličtina
Original language name
Some remarks on farthest points
Original language description
We use renormings and generic differentiability of convex functions to prove some results on farthest points in sets in Banach spaces. As a corollary, we obtain an alternative proof of the Lindenstrauss-Troyanski result on representation of weakly compact convex sets by means of strongly exposed points. We use this approach to simplify former proofs of several known results in this area.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190901" target="_blank" >IAA100190901: Topological and geometric structures in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales
ISSN
1578-7303
e-ISSN
—
Volume of the periodical
105
Issue of the periodical within the volume
1
Country of publishing house
ES - SPAIN
Number of pages
13
Pages from-to
119-131
UT code for WoS article
000289765000009
EID of the result in the Scopus database
—