Two-sided bounds of the discretization error for finite elements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00359285" target="_blank" >RIV/67985840:_____/11:00359285 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1051/m2an/2011003" target="_blank" >http://dx.doi.org/10.1051/m2an/2011003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/m2an/2011003" target="_blank" >10.1051/m2an/2011003</a>
Alternative languages
Result language
angličtina
Original language name
Two-sided bounds of the discretization error for finite elements
Original language description
We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190803" target="_blank" >IAA100190803: The finite element method for higher dimensional problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
E S A I M: Mathematical Modelling and Numerical Analysis
ISSN
0764-583X
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
5
Country of publishing house
FR - FRANCE
Number of pages
10
Pages from-to
915-924
UT code for WoS article
000289628000006
EID of the result in the Scopus database
—