Optimization of a functionally graded circular plate with inner rigid thin obstacles. I. Continuous problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00368347" target="_blank" >RIV/67985840:_____/11:00368347 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/zamm.201000119" target="_blank" >http://dx.doi.org/10.1002/zamm.201000119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201000119" target="_blank" >10.1002/zamm.201000119</a>
Alternative languages
Result language
angličtina
Original language name
Optimization of a functionally graded circular plate with inner rigid thin obstacles. I. Continuous problems
Original language description
Optimal control problems are considered for a functionally graded circular plate with inner rigid obstacles. Axisymmetric bending and stretching of the plate is studied using the classical Kirchhoff theory. The plate material is assumed to vary accordingto a power-law distribution in terms of the volume fractions of the constituents. Four optimal design problems are considered for the elastic circular plate. The state problem is represented by a variational inequality with a monotone operator and the design variables (i.e., the thickness and the exponent of the power-law) influence both the coefficients and the set of admissible state functions. We prove the existence of a solution to the above-mentioned optimal design problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190803" target="_blank" >IAA100190803: The finite element method for higher dimensional problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
9
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
711-723
UT code for WoS article
000295068600003
EID of the result in the Scopus database
—