Exact algorithms for solving stochastic games
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00369977" target="_blank" >RIV/67985840:_____/11:00369977 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Exact algorithms for solving stochastic games
Original language description
Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games. When the number of positions of the game is constant, our algorithms run in polynomial time.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 43rd annual ACM symposium on Theory of computing (STOC 2011)
ISBN
978-1-4503-0691-1
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
205-214
Publisher name
ACM
Place of publication
New York
Event location
San José
Event date
Jun 6, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—