Toeplitz quantization and asymptotic expansions for real bounded symmetric domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00373159" target="_blank" >RIV/67985840:_____/11:00373159 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00209-010-0702-9" target="_blank" >http://dx.doi.org/10.1007/s00209-010-0702-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-010-0702-9" target="_blank" >10.1007/s00209-010-0702-9</a>
Alternative languages
Result language
angličtina
Original language name
Toeplitz quantization and asymptotic expansions for real bounded symmetric domains
Original language description
An analogue of the star product, familiar from deformation quantization, is studied in the setting of real bounded symmetric domains. The analogue turns out to be a certain invariant operator, which one might call star restriction, from functions on thehermitification of the domain into functions on the domain itself. In particular, we establish the usual (i.e. semiclassical) asymptotic expansion of this star restriction, and further obtain a real- variable analogue of a theorem of Arazy and rsted concerning the analogous expansion for the Berezin transform.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0128" target="_blank" >GA201/06/0128: Methods of function theory and Banach algebras in operator theory III.</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
268
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
37
Pages from-to
931-967
UT code for WoS article
000292684500017
EID of the result in the Scopus database
—