Bifurcation for a reaction-diffusion system with unilateral and Neumann boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00374182" target="_blank" >RIV/67985840:_____/12:00374182 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2011.10.016" target="_blank" >http://dx.doi.org/10.1016/j.jde.2011.10.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2011.10.016" target="_blank" >10.1016/j.jde.2011.10.016</a>
Alternative languages
Result language
angličtina
Original language name
Bifurcation for a reaction-diffusion system with unilateral and Neumann boundary conditions
Original language description
We consider a reaction?diffusion system of activator?inhibitor or substrate-depletion type which is subject to diffusion-driven instability if supplemented by pure Neumann boundary conditions. We show by a degree-theoretic approach that an obstacle (e.g.a unilateral membrane) modeled in terms of inequalities, introduces new bifurcation of spatial patterns in a parameter domain where the trivial solution of the problem without the obstacle is stable. Moreover, this parameter domain is rather different from the known case when also Dirichlet conditions are assumed. In particular, bifurcation arises for fast diffusion of activator and slow diffusion of inhibitor which is the difference from all situations which we know.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190805" target="_blank" >IAA100190805: Bifurcation and parameter dependence for unilateral boundary value problems and interpretation in natural sciences</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
252
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
2951-2982
UT code for WoS article
000300077400001
EID of the result in the Scopus database
—