On the vanishing electron-mass limit in plasma hydrodynamics in unbounded media
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00384705" target="_blank" >RIV/67985840:_____/12:00384705 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00332-012-9134-5" target="_blank" >http://dx.doi.org/10.1007/s00332-012-9134-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00332-012-9134-5" target="_blank" >10.1007/s00332-012-9134-5</a>
Alternative languages
Result language
angličtina
Original language name
On the vanishing electron-mass limit in plasma hydrodynamics in unbounded media
Original language description
We consider the zero-electron-mass limit for the Navier?Stokes?Poisson system in unbounded spatial domains. Assuming smallness of the viscosity coefficient and ill-prepared initial data, we show that the asymptotic limit is represented by the incompressible Navier?Stokes system, with a Brinkman damping, in the case when viscosity is proportional to the electron-mass, and by the incompressible Euler system provided the viscosity is dominated by the electron mass. The proof is based on the RAGE theorem and dispersive estimates for acoustic waves, and on the concept of suitable weak solutions for the compressible Navier?Stokes system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Nonlinear Science
ISSN
0938-8974
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
985-1012
UT code for WoS article
000312200000005
EID of the result in the Scopus database
—