All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tight lower bounds for the online labeling problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00386313" target="_blank" >RIV/67985840:_____/12:00386313 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/2213977.2214083" target="_blank" >http://dx.doi.org/10.1145/2213977.2214083</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2213977.2214083" target="_blank" >10.1145/2213977.2214083</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tight lower bounds for the online labeling problem

  • Original language description

    We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,...,r} are to be stored in an array of size m >= n. The items are presented sequentially in an arbitrary order, and must be storedin the array in sorted order (but not necessarily in consecutive locations in the array). Each new item must be stored in the array before the next item is received. If r < m then we can simply store item j in location j but if r > m then we may have toshift the location of stored items to make space for a newly arrived item. The algorithm is charged each time an item is stored in the array, or moved to a new location. The goal is to minimize the total number of such moves the algorithm has to do. Inthis paper we prove lower bounds Omega(log^2 n), for m=Cn, C>1, and Omega(log^3 n), for m=n, that show that known algorithms for this problem are optimal, up to constant factors.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F10%2F0854" target="_blank" >GAP202/10/0854: Circuit Complexity and Self-Reducibility</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 44th symposium on Theory of Computing, STOC'2012

  • ISBN

    978-1-4503-1245-5

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    1185-1198

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    New York

  • Event date

    May 19, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article