Compositions of (max+)-automata
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00386930" target="_blank" >RIV/67985840:_____/12:00386930 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3182/20121003-3-MX-4033.00013" target="_blank" >http://dx.doi.org/10.3182/20121003-3-MX-4033.00013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3182/20121003-3-MX-4033.00013" target="_blank" >10.3182/20121003-3-MX-4033.00013</a>
Alternative languages
Result language
angličtina
Original language name
Compositions of (max+)-automata
Original language description
Automata with weights (multiplicities) in the so called (max,+) semiring constitute a class of timed automata. Their modeling power has been studied in Gaubert and Mairesse (1999): at least timed safe Petri nets can be modeled by means of (max,+) automata. In this contribution, we define compositions for (max,+) automata. The motivation is to be able to model a complex system by composing sub-models representing its elementary parts. In doing so we expect two benefits: the modeling activity should be eased and enhanced since the model can be obtained in a modular manner with a good understanding of phenomena; the modeling power of (max,+) automata can be refined.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F11%2F0517" target="_blank" >GAP103/11/0517: Decentralized supervisory control of timed automata</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 11th International Workshop on Discrete Event Systems (WODES 2012)
ISBN
978-3-902823-28-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
61-66
Publisher name
IFAC
Place of publication
Guadalajara
Event location
Guadalajara
Event date
Oct 3, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—