Sensitivity analysis of 1d steady forced scalar conservation laws
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00391347" target="_blank" >RIV/67985840:_____/13:00391347 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2013.01.041" target="_blank" >http://dx.doi.org/10.1016/j.jde.2013.01.041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2013.01.041" target="_blank" >10.1016/j.jde.2013.01.041</a>
Alternative languages
Result language
angličtina
Original language name
Sensitivity analysis of 1d steady forced scalar conservation laws
Original language description
We analyze 1d forced steady state scalar conservation laws. We first show the existence and uniqueness of entropy solutions as limits as t tends to infinity of the corresponding solutions of the scalar evolutionary hyperbolic conservation law. We then linearize the steady state equation with respect to perturbations of the forcing term. This leads to a linear first order differential equation with, possibly, discontinuous coefficients. We show the existence and uniqueness of solutions in the context ofduality solutions. We also show that this system corresponds to the steady state version of the linearized evolutionary hyperbolic conservation law. This analysis leads us to the study of the sensitivity of the shock location with respect to variations of the forcing term, an issue that is relevant in applications to optimal control and parameter identification problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
254
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
3817-3834
UT code for WoS article
000316512200007
EID of the result in the Scopus database
—