All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00392313" target="_blank" >RIV/67985840:_____/13:00392313 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00208-012-0862-5" target="_blank" >http://dx.doi.org/10.1007/s00208-012-0862-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00208-012-0862-5" target="_blank" >10.1007/s00208-012-0862-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows

  • Original language description

    We establish the asymptotic limit of the compressible Navier?Stokes system in the regime of low Mach and high Reynolds number on unbounded spatial domains with slip boundary condition. The result holds in the class of suitable weak solutions satisfying arelative entropy inequality.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Annalen

  • ISSN

    0025-5831

  • e-ISSN

  • Volume of the periodical

    356

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

    683-702

  • UT code for WoS article

    000318691400012

  • EID of the result in the Scopus database