On radial stationary solutions to a model of non-equilibrium growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00393489" target="_blank" >RIV/67985840:_____/13:00393489 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0956792512000484" target="_blank" >http://dx.doi.org/10.1017/S0956792512000484</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0956792512000484" target="_blank" >10.1017/S0956792512000484</a>
Alternative languages
Result language
angličtina
Original language name
On radial stationary solutions to a model of non-equilibrium growth
Original language description
We present the formal geometric derivation of a non-equilibrium growth model that takes the form of a parabolic partial differential equation. Subsequently, we study its stationary radial solutions by means of variational techniques. Our results depend on the size of a parameter that plays the role of the strength of forcing. For small forcing we prove the existence and multiplicity of solutions to the elliptic problem. We discuss our results in the context of non-equilibrium statistical mechanics.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Applied Mathematics
ISSN
0956-7925
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
437-453
UT code for WoS article
000319091300005
EID of the result in the Scopus database
—