Generalized spectral radius and its max algebra version
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00395493" target="_blank" >RIV/67985840:_____/13:00395493 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.laa.2012.09.024" target="_blank" >http://dx.doi.org/10.1016/j.laa.2012.09.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2012.09.024" target="_blank" >10.1016/j.laa.2012.09.024</a>
Alternative languages
Result language
angličtina
Original language name
Generalized spectral radius and its max algebra version
Original language description
Let Sigma subset of C-nxn and Psi subset of R-+(nxn) likra be bounded subsets and let rho(Sigma) and mu(Psi) denote the generalized spectral radius of Sigma and the max algebra version of the generalized spectral radius of Psi, respectively. We apply a single matrix description of mu(Psi) to give a new elementary and straightforward proof of the Berger-Wang formula in max algebra and consequently a new short proof of the original Berger-Wang formula in the case of bounded subsets of n x n non-negative matrices. We also obtain a new description of mu(Psi) in terms of the Schur-Hadamard product and prove new trace and max-trace descriptions of mu(Psi) and rho(Sigma).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
439
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
1006-1016
UT code for WoS article
000321084700017
EID of the result in the Scopus database
—