Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00395526" target="_blank" >RIV/67985840:_____/13:00395526 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/0264-9381/30/16/165014" target="_blank" >http://dx.doi.org/10.1088/0264-9381/30/16/165014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0264-9381/30/16/165014" target="_blank" >10.1088/0264-9381/30/16/165014</a>
Alternative languages
Result language
angličtina
Original language name
Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension
Original language description
We consider time reversal transformations to obtain twofold orthogonal splittings of any tensor on a Lorentzian space of arbitrary dimension n. Applied to the Weyl tensor of a spacetime, this leads to a definition of its electric and magnetic parts relative to an observer (defined by a unit timelike vector field u), in any dimension. We study the cases where one of these parts vanishes in detail, i.e., purely electric (PE) or magnetic (PM) spacetimes. We generalize several results from four to higher dimensions and discuss new features of higher dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
16
Country of publishing house
GB - UNITED KINGDOM
Number of pages
50
Pages from-to
—
UT code for WoS article
000322324700016
EID of the result in the Scopus database
—