Stability with respect to domain of the low Mach number limit of compressible viscous fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00395787" target="_blank" >RIV/67985840:_____/13:00395787 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0218202513500371" target="_blank" >http://dx.doi.org/10.1142/S0218202513500371</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202513500371" target="_blank" >10.1142/S0218202513500371</a>
Alternative languages
Result language
angličtina
Original language name
Stability with respect to domain of the low Mach number limit of compressible viscous fluids
Original language description
We study the asymptotic limit of solutions to the barotropic Navier?Stokes system, when the Mach number is proportional to a small parameter ? and the fluid is confined to an exterior spatial domain ?? that may vary with ?. As ? 0, it is shown that the fluid density becomes constant while the velocity converges to a solenoidal vector field satisfying the incompressible Navier?Stokes equations on a limit domain. The velocities approach the limit strongly (a.a.) on any compact set, uniformly with respectto a certain class of domains. The proof is based on spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
13
Country of publishing house
SG - SINGAPORE
Number of pages
29
Pages from-to
2465-2493
UT code for WoS article
000324743200004
EID of the result in the Scopus database
—