Periodic solutions to the Liénard type equations with phase attractive singularities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00397163" target="_blank" >RIV/67985840:_____/13:00397163 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/1687-2770-2013-47" target="_blank" >http://dx.doi.org/10.1186/1687-2770-2013-47</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-2770-2013-47" target="_blank" >10.1186/1687-2770-2013-47</a>
Alternative languages
Result language
angličtina
Original language name
Periodic solutions to the Liénard type equations with phase attractive singularities
Original language description
Sufficient conditions are established guaranteeing the existence of a positive periodic solution to the Liénard type equation with singularities in the phase variable at zero. The results obtained are rewritten for the particular type of the equation which covers also the so-called Rayleigh-Plesset equation, frequently used in fluid mechanics to model the bubbel dynamics in liquid. In the paper, there is studied the case with the attractive singularity in the phase variable. The results obtained assurethat there exists a positive periodic solution to the above-mentioned equation if the power of the singularity is sufficiently large.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Boundary value problems
ISSN
1687-2770
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
6 March
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
—
UT code for WoS article
000325705400003
EID of the result in the Scopus database
—