All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reduction theorems for weighted integral inequalities on the cone of monotone functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00398086" target="_blank" >RIV/67985840:_____/13:00398086 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1070/RM2013v068n04ABEH004849" target="_blank" >http://dx.doi.org/10.1070/RM2013v068n04ABEH004849</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1070/RM2013v068n04ABEH004849" target="_blank" >10.1070/RM2013v068n04ABEH004849</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reduction theorems for weighted integral inequalities on the cone of monotone functions

  • Original language description

    This paper surveys results related to the reduction of integral inequalities involving positive operators in weighted Lebesgue spaces on the real semi-axis and valid on the cone of monotone functions, to certain more easily manageable inequalities validon the cone of non-negative functions. The case of monotone operators is new. As an application, a complete characterization for all possible integrability parameters is obtained for a number of Volterra operators.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Russian Mathematical Surveys

  • ISSN

    0036-0279

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    68

  • Pages from-to

    597-664

  • UT code for WoS article

    000326685900001

  • EID of the result in the Scopus database