Reduction theorems for weighted integral inequalities on the cone of monotone functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00398086" target="_blank" >RIV/67985840:_____/13:00398086 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1070/RM2013v068n04ABEH004849" target="_blank" >http://dx.doi.org/10.1070/RM2013v068n04ABEH004849</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1070/RM2013v068n04ABEH004849" target="_blank" >10.1070/RM2013v068n04ABEH004849</a>
Alternative languages
Result language
angličtina
Original language name
Reduction theorems for weighted integral inequalities on the cone of monotone functions
Original language description
This paper surveys results related to the reduction of integral inequalities involving positive operators in weighted Lebesgue spaces on the real semi-axis and valid on the cone of monotone functions, to certain more easily manageable inequalities validon the cone of non-negative functions. The case of monotone operators is new. As an application, a complete characterization for all possible integrability parameters is obtained for a number of Volterra operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Russian Mathematical Surveys
ISSN
0036-0279
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
4
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
68
Pages from-to
597-664
UT code for WoS article
000326685900001
EID of the result in the Scopus database
—