A maximum modulus theorem for the Oseen problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00399394" target="_blank" >RIV/67985840:_____/13:00399394 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/13:00203566
Result on the web
<a href="http://dx.doi.org/10.1007/s10231-012-0258-x" target="_blank" >http://dx.doi.org/10.1007/s10231-012-0258-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-012-0258-x" target="_blank" >10.1007/s10231-012-0258-x</a>
Alternative languages
Result language
angličtina
Original language name
A maximum modulus theorem for the Oseen problem
Original language description
Classical solutions of the Oseen problem are studied on an exterior domain ? with Ljapunov boundary. It is proved a unique solvability of the problem and a maximum modulus estimate.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
—
Volume of the periodical
192
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
1059-1076
UT code for WoS article
000327101300005
EID of the result in the Scopus database
—