On the moduli and characteristic of monotonicity in Orlicz-Lorentz function spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00430333" target="_blank" >RIV/67985840:_____/13:00430333 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the moduli and characteristic of monotonicity in Orlicz-Lorentz function spaces
Original language description
In this paper we calculate the characteristic of monotonicity of Orlicz-Lorentz function spaces Lambda Phi,omega. Since degenerate Orlicz functions phi and degenerate weight functions w are also admitted, the investigations concern the most possible wideclass of Orlicz-Lorentz function spaces. These results concern both cases - an infinite and a finite non-atomic measure space, although in case of the finite measure the results are much more interesting. Let us recall that calculating of the characteristic of monotonicity of a Banach lattice is of great interest because of the result of Betiuk-Pilarska and Prus [2] stating that if a Banach lattice X has this characteristic strictly smaller then 1 and X is weakly orthogonal, then it has the weak fixedpoint property (see [29]).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1920" target="_blank" >GAP201/10/1920: Contemporary function spaces theory and applications</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
955-970
UT code for WoS article
000330921000005
EID of the result in the Scopus database
—